Произведением матрицы A имеющей порядки m и n на матрицу B имеющую порядки n и p называется матрица C имеющая порядки m и p и элементы определяемые формулой
\[ A = a_{i,j} = (a_{i,j})\begin{cases} i={1,2,\dots,m} \\ j={1,2,\dots,n} \end{cases} \]Иначе: Элемент ci,j стоящий на пересечении i строки и j столбца матрицы С равен сумме попарных произведений элементов i строки матрицы A и j столбца матрицы B
Пример:
Здесь A (m=2 строки, n=3 столбца), B (n=3 строки, p=2 столбца), Новая матрица С (m=2 строки, p=2 столбца),
Для обозначения произведения матрицы A на матрицу B используется запись
Перемножение (произведение) матриц, есть операция составления произведения матрицы A на матрицу B.
Матрицу A можно умножить не на всякую матрицу B. Необходимо, чтобы число столбцов матрицы A было равно числу строк матрицы B
Оба произведения A·B и B·A можно определить только в том случае, когда число столбцов A совпадает с числом строк B, а число строк A совпадает с числом столбцов B. При этом обе матрицы A·B и B·A будут квадратными, но порядки их будут разными.
Чтобы оба произведения A·B и B·A были определены и имели одинаковый порядок, необходимо и достаточно, чтобы матрицы A и B были квадратными матрицами одного порядка.
1. Сочетательное свойство произведения матриц
2. Распределительное свойство произведения матриц относительно суммы матриц
2. Перестановочное свойство произведения матриц справедливо имеет место лишь в исключительных частных случаях. В общем случае произведение матриц не обладает таким свойством, т.е.:
Если в диагональной матрице D все элементы главной диагонали равны друг другу, т.е.
то для любой квадратной матрицы A порядка n справедливо равенство
Copyright © FXYZ.ru, 2007 2024.
Мобильная β версия | полная